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Javelin EPBST Software Development 

Stephen J. Dow 
Department of Mathematical Sciences 

The University of Alabama in Huntsville 

October 15, 2001 

Final Report 

F/DOD/ARMY/AMCOM/Javelin EPBST Software Development 
DAAH01-97-D-R005 D.O. 13 

Period of Performance: 12/10/98 to 12/30/99 

1. Introduction 

This task continues work on the development of a new trainer for the Javelin weapon system, called 

the Javelin Enhanced Producibility Basic Skills Trainer (EPBST), which superceeds a prior generation trainer 

simply called the Basic Skills Trainer (BST). The period of performance of this task encompasses the core 

development period during which a team effort transformed early prototype code into a full implementation of 

the EPBST requirements. 

Javelin is a shoulder-launched antitank missile. Both the BST and EPBST include (1) an instructor 

station, which performs the processing to generate and display a terrain scene with simulated targets, and (2) a 

simulated command launch unit (SCLU), which the student gunner manipulates as he or she would the actual 

Javelin weapon system to engage targets. Whereas the BST instructor station incorporated custom proprietary 

graphics hardware to display rather artificial-looking terrain scenes, the EPBST uses standard Personal 

Computer (PC) technology to display photographic terrain scenes with targets rendered from 3D models. 

The project to develop the EPBST was split into hardware development to be performed by ECC 

International Corporation and software development to be performed by the Software Engineering Directorate 

(SED) of the US Army Aviation and Missile Command. The author's work under this task was part of the 

software development project, a team effort performed by SED personnel, the author, and other contractor 

personnel. Thus this document summarizes work performed by various contributors. It should also be noted 

that various other documentation for this project exists within the SED organization. 
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2. System Architecture 

The major components of the EPBST software are illustrated in the System Architecture Diagram 

below, which has been reproduced from the EPBST Software Requirements Specification. 
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Figure 1: EPBST System Architecture 

As shown in the diagram, the software mainly falls into two large groupings, Workstation and 

Instructor Station. The Workstation software is used offline, prior to training sessions, to create the terrain, 



target, and path data needed during those sessions. The Instructor Station software is what runs during training 

sessions, to set up the training exercises, run the simulation (communicating with the SCLU), record scoring 

data, manage student records, etc. The Workstation software is used only by personnel at SED facilities, 

whereas the Instructor Station software is fielded to various training locations. 

Versions of two of the main Workstation components, Range Finder and Path Editor, have been 

documented in the final reports of previous tasks by this author. The present report will focus on components 

of the Instructor Station software. 

3. EPBST Driver 

The Driver is the EPBST software module through which the user controls the execution of all the 

other instructor station software modules. The Driver executable file is named menu.exe. In addition to 

handling the startup of the other modules (diagnostics.exe, exedit.exe, tsim.exe, replay.exe), the driver program 

displays the menus for student sessions and incorporates the logic for scoring exercises and handling student 

records. The four main buttons on the EPBST main menu are: 

Button Function 

DAILY READINESS CHECK 

JAVELIN TRAINING 

EXERCISE EDITOR 

IR TRAINING 

Start diagnostics.exe 

Display student handler dialogs 

Start exedit.exe 

Start IR Training executable 

Three of the four buttons, all except the JAVELIN TRAINING button, serve simply to start a separate 

executable program. The Driver (menu.exe) enters a wait mode until that other program exits, at whic"h point 

execution returns to the Driver and the main menu appears again. 

The JAVELIN TRAINING button serves to enter the student handler portion of the EPBST, which 

includes the dialog boxes for creating or loading a student record, for displaying a student session, and for 

displaying the score and critiques for a particular exercise the student has trained on. Those dialogs have 

buttons used to start tsim.exe ("START SELECTED EXERCISE") or replay.exe ("VIEW REPLAY"). The 

Driver also contains the code which displays the briefing screen prior to the start of an exercise. Interprocess 

communication between menu.exe and tsim.exe allows the briefing screen to appear while the simulation data 

is being loaded. 



4. Exercise Editor 

An EPBST Exercise consists of a terrain, a set of target paths across that terrain each with a specified 

target model to travel along that path, and additional parameters such as weather condition, number of available 

rounds the gunner will have, etc. A data file, named est. dat, stores the exercise information and is used by 

several EPBST modules, including the Driver, Trainer Simulation, and Exercise Editor. Only the Exercise 

Editor modifies the file however. The Exercise Editor allows the user to create new exercises, modify existing 

exercises, and copy exercises between EPBST workstations. The exercises are organized into directories; new 

directories may be created within the Exercise Editor. Some of the delivered directories are designated as read- 

only; exercises in those directories cannot be modified or deleted using the Exercise Editor. However these 

exercises may still be loaded into the Exercise Editor, and modified versions of them may be stored in other 

directories. 

5. Trainer Simulation 

The Trainer Simulation (TSIM) is the software module which actually runs the simulation, sending 

video and audio to the SCLU for the gunner to see and hear, receiving data from the SCLU corresponding to 

gunner aimpoint motion and switch input, and responding appropriately to simulate the behavior of the Javelin. 

This module corresponds to the program executable tsim.exe. It handles all aspects of generating the video 

with real time panning and target movement and audio sound effects needed to produce the simulation. Other 

software modules are responsible for setting up the data needed to start up the simulation; thus on startup 

tsim.exe enters directly into the simulation mode, all interaction with the instructor to set up exercise 

parameters, etc having already occurred. When the simulation is complete or is aborted, tsim.exe exits and 

software control returns to the Driver module. 

Except for the message areas at the bottom of the screen, which are masked out so that the gunner does 

not see them, the display presented to the gunner is the same as that shown on the the instructor station screen. 

The display consists of the terrain scene with targets and overlaid symbology, surrounded by icons which 

indicate the system state. 

TSIM performs some of its display logic in our own C code and some using DirectX hardware 

support. An overview of the logic for rendering 3D target models and inserting them into the terrain scene has 

been given in the previous report entitled "Trainer Software Development." Here we will discuss the 

subsequent display logic for composing all elements that appear on the screen. 
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Figure 2: Display Path Diagram 



At initialization several offscreen DirectX surfaces (chunks of video memory) are allocated: 

(1) one texture surface for each target to hold its texture images; 

(2) a rendering surface where the target (without terrain) is rendered; 

(3) two offscreen surfaces ("Surface 0" and "Surface 1") for construction of the final display. 

Since these surfaces are in video memory, their data is in the pixel format of the screen, which is 16-bit "high 

color" for TSIM. In addition to the DirectX surfaces there are image buffers allocated in system memory to 

hold 

(4) the original terrain images; 

(5) texture images; 

(6) the rendered target images; 

(7) the portion of the scene currently being updated; 

(8) seeker image data. 

The Display Path Diagram below has boxes indicating the various DirectX surfaces and image buffers, except 

for items 5 (texture images) and 8 (seeker image data) above. The Javelin system has several viewing modes: a 

visible spectrum mode (DAY), wide field-of-view infrared (WFOV), and narrow field-of-view infrared 

(NFOV). Three separate terrain images are held in memory to be used for these modes, the terrain image 

buffer in the diagram represents whichever of those three is currently in use.   During target engagement the 

gunner enters a fourth viewing mode in which the image presented is from the missile seeker; the software uses 

the NFOV image buffer to construct the displayed image in seeker mode.The WFOV image has the same 

resolution as the visible image; NFOV has twice the resolution in each of X and Y. Also during initialization, 

all the texture images used by all the targets in the exercise are read from disk into system memory buffers. 

Each texture image is copied into a portion of the DirectX texture surface assigned to a given target. When 

switching between DAY and one of the night viewing modes, the texture images are swapped out, so that the 

proper images for the current viewing mode are in the DirectX surface. 

Let's call the rectangular portion of the screen where terrain and targets appear the "display rectangle." 

In the code, this is either display_rect or seeker_rect, depending on the viewing mode. The sequence 

of steps used to fill this rectangle with the proper imagery are numbered 1-6 in the Display Path Diagram. 

Step 1 represents the rendering of a target from its VRML vertex data and texture data into the DirectX 

rendering surface. That surface then contains a single target rendered on top of a background color, which is 

specified as a color (currently a fixed shade of purple) we do not expect to occur within the target. Immediately 

after rendering, the result is copied from the rendering surface into the system memory buffer for that target 

(Step 2 in the diagram). In the code, steps 1 and 2 occur within a call to EstRenderTarget (which in turn calls 

Dx functions to perform the rendering and transfer the data). 

The function EstUpdateTargets loops through all the targets in the exercise, calling EstRenderTarget 

for each one that it deems to be in need of an updated rendering. EstUpdateTargets also maintains each target's 



current rectangle in terrain pixel coordinates and its current range. It also computes the current frame and 

update rectangle for any active video clips (used for example to display the explosion when a target is hit). 

Step 3 represents the construction of a portion of the scene containing terrain and possibly one or more 

targets. In the code this occurs in the function EstDrawSceneRect. It first copies the specified rectangle of 

terrain into the scene buffer; then it overwrites pixels where targets or animation frames appear using data from 

the corresponding target or animation buffers. This latter step is handled by a z-buffer algorithm; i.e. a range 

buffer for the update rectangle is initialized with terrain ranges; then it loops through the targets, copying non- 

background target pixels to the scene buffer when the target range is smaller than the corresponding value in 

the range buffer. Then active animations are drawn; alpha values are used to merge the animation pixel value 

with the underlying terrain/target pixel value. When applicable (i.e. WFOV or NFOV viewing modes), the 

contrast/brightness mapping and focus processing are applied to the resulting scene buffer during this step. 

Step 4 represents transfer of the scene buffer just constructed to the first DirectX offscreen surface, 

Surface 0, which contains what's currently on the screen within the display rectangle, except for the overlay 

symbology (day stadia, crosshairs, trackgates, etc). This occurs within TsUpdateTerrainRect, when it calls 

DxCopyBmpToSurface, except in seeker mode, which is discussed separately below. 

Step 5 represents copying the image from Surface 0 to Surface 1 and adding the overlay symbology. 

Step 6 is just a direct copy of the data in Surface 1 to the center portion of the screen. Steps 5 and 6 

occur in TsUpdateScene. 

Additional processing occurs at Step 4 of the display logic when in seeker mode, to simulate the 64 x 

64 resolution of the seeker. In seeker mode the dimensions of the display rectangle are xview = 230 and 

yview = 227. Three additional system memory buffers are allocated at initialization for use in seeker mode 

only. One, named seeker_pix_lo, is a 64 x 64 pixel buffer. The other two, named seeker_pix_hi 

and seeker_pix_d, have the dimensions xview x  yview of the display rectangle. At Step 4 of the 

display path, instead of directly transferring the scene buffer constructed by EstDrawSceneRect into DirectX 

Surface 0, the data is first copied into seeker_pix_hi. That data is resolution-reduced by averaging small 

blocks of pixels to form each pixel of seeker_pix_lo and then stretched by pixel replication to create 

seeker_pix_d. The resulting data is then copied into DirectX Surface 0 for use in steps 5 and 6 as in 

before. 

The code is structured so that a typical pass through the TSIM main loop (TsProcessFrame) requires 

only small portions of the display rectangle to be constructed by EstDrawSceneRect. The main causes for 

updates are target movement, active animations, and panning (changes to the line-of-sight). Within each main 

loop iteration, the rectangles which need to be updated due to target movement or animation changes are 

recorded, as well as those rectangles along the edge of the scene which come into view due to panning. If there 

are no changes such as a change in viewing mode which would require an update of the entire display, then the 

individual rectangles are passed to EstDrawSceneRect separately. The data already in DirectX Surface 0 or 

seeker_pix_hi from the previous iteration is shifted according to the new line-of-sight, and the 



individually scene patch rectangles are constructed and copied into DirectX Surface 0 or seeker pix hi as 

described earlier. A single call to TsUpdateScene at the end of the loop iteration then handles the remaining 

seeker buffer processing and steps 5 and 6. 

6. Replay 

When the trainer simulation program (tsim.exe) exits, it writes a file containing a log of events that 

occurred during the running ofthat exercise, including all the line-of-sight changes, gunner switch inputs such 

seeker and fire trigger pulls, missile launches and target kills, etc. The file is stored in the epbst\bin 

directory with filename ai . log. This file is then used both by the driver program for scoring and by the 

replay program to replay the exercise. 

When control returns to the driver program, it reads the file, computes a score, and generates critique 

messages. The score and critiques are displayed on the score dialog, which has "Okay" and "Cancel" buttons at 

the bottom. If the instructor hits the "Okay" button, the file ai.log is moved to the epbst\replays directory 

and renamed student_name_XX_YY. log, as explained below. This file is henceforward used only for 

replays; the scoring information which was computed is stored in the student record on floppy disk. 

The replay filename student_name_XX_YY. log is constructed as follows: student_name is the 

student name as given in the student record, except with each space replaced by an underscore. YY is the 

exercise number (as it exists at the time the exercise is run), numbers bigger than 99 are coded as a two letter 

combination. XX are two additional characters chosen so that (1) the full filename above does not match an 

existing file in the replays directory, and (2) the four characters XXYY together do not match an existing replay 

id in this student's record. 

The four characters XXYY are together called the replay id, and are stored in the student record along 

with the other information for the given exercise such as the score. If the student has previously attempted the 

current exercise, so that an existing replay id is found in the student record, then that same id is maintained, 

causing the previous replay file to be overwritten (if the attempt was on the same instructor station and the file 

still exists).   If two students have the same student_name and are alternating use of the same instructor station, 

the XX part of the file names will keep them separate. 

Whenever a replay file is about to be stored (i.e. moved and renamed from where tsim stored it), the 

disk usage of all *.log files in the replays directories is checked, and if it is greater than a preset limit (50 mb), 

replay files are deleted (oldest first), to bring the total disk usage back below the limit. This occurs after the 

above name determination. 

The VIEW REPLAY button on the student session dialog is enabled or disabled based on whether 

there is a corresponding replay file for that student and exercise in the replays directory. 


